HOLDEN LANE PRIMARY SCHOOL

POLICY DOCUMENT

Mathematics Calculation Policy
Date: September 2023

Holden Lane Primary School

Mathematics Calculation Policy

Holden Lane Primary School's calculation policy is taken from the White Rose Maths calculation policy.

White Rose Maths is used to inform each class's long-term curriculum plan and the calculation policy reflects the strategies and methods taught. This ensures consistency and progression of skills and knowledge between year groups.

Contents:

Page 3: Addition - Progression of calculation strategies
Page 9: Subtraction - Progression of calculation strategies
Page 14: Addition and subtraction - Glossary of terms
Page 16: Times tables - Progression of calculation strategies
Page 24: Multiplication - Progression of calculation strategies
Page 29: Division - Progression of calculation strategies
Page 37: Multiplication and division - Glossary of terms

Addition

Progression of calculation strategies

Skill	Year	Representations and models	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square

Skill	Year	Representations and models	
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column addition
Add with up to 3-digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with up to 4-digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with more than 4	5	Part-whole model Bar model	Place value counters Column addition
Add with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column addition

Skill: Add 1-digit numbers within 10							Year: 1
$4+3=7$							When adding numbers to 10, children can explore both aggregation and augmentation. The part-whole model, discrete and continuous bar model, number shapes and ten frame support aggregation. The combination bar model, ten frame, bead string and number track all support augmentation.

Skill: Add 1 and 2-digit numbers to 20	Year: 1/2
$8+7=15$ $\left(\begin{array}{c} 8+7=15 \\ 2 \end{array}\right.$	When adding onedigit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Different manipulatives can be used to represent this exchange. Use concrete resources alongside number lines to support children in understanding how to partition their jumps.

Skill: Add 1-digit and 2-digit numbers to 100													Year: 2/3
38 $38+5=43$													When adding single digits to a two-digit number, children should be encouraged to count on from the larger number. They should also apply their knowledge of number bonds to add more efficiently e.g. $8+5=13$ so 38 $+5=43$. Hundred squares and straws can support children to find the number bond to 10 .

ill: Add numbers with up to 4 digit								Year: 4
$1,378+2,148=3,526$								Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 4 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

Subtraction

Progression of calculation strategies

Skill	Year	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column subtraction

Skill	Year	Representations and models	
Subtract with up to 3- digits	3	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with up to 4- digits	4	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with more than 4 digits	5	Part-whole model Bar model	Place value counters Column subtraction
Subtract with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column subtraction

Skill: Subtract 1 and 2-digit numbers to 100	Year: 2
	At this stage, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient. Children can also use a blank number line to count on to find the difference. Encourage them to jump to multiples of 10 to become more efficient.

Skill: Subtract numbers with more than $\mathbf{4}$ digits

Addition and Subtraction

Glossary of Terms

Addend - A number to be added to another.
Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.
Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.
Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.
Total - The aggregate or the sum found by addition.

Times tables

Progression of calculation strategies

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 2-times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines
Recall and use multiplication and Evivision facts for the 5-times table objects	2	Bar model Number shapes Counters Money	Ten frames Bead strings
Recall and use multiplication and division facts for the 10-times table	2	Humber lines Everyday objects	

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 6-times table	4	Hundred square Number shapes	Bead strings Numberyday tracks objects

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings
Recall and use multiplication and division facts for the 11-times table	4	Number lines	
Recall and use multiplication and division facts for the 12-times table	4	Base 10	Place value counters
Number lines			

Skill: 2 times table	Year: 2
	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.

Skill: 5 times table	Year: 2
 	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the five times table, using concrete manipulatives to support. Notice the pattern in the ones as well as highlighting the odd, even, odd, even pattern.

Skill: 10 times table										Year: 2
		$\begin{gathered} 1 \\ 20 \\ \hline \end{gathered}$			$\begin{aligned} & 1 \\ & \hline 0 \\ & 0 \end{aligned}$					Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the ten times table, using concrete manipulatives to support. Notice the pattern in the digitsthe ones are always 0 , and the tens increase by 1 ten each time.

Skill: 6 times table															Year: 4
														10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
						(12)	13	14	15	16	17	(18)	19	20	
					21	22	23	(2)	25	26	27	28		\%	
					31	32	33	34	35	3	37	38	39	40	
						42)	43	44	45	46	47	48	49	50	
					51	52	53	(54)	55	56	57	58			
6	12	18	24	30		62	63	64	65	66	67	68	69	70	
36	42	48	54	60		72	73	74	75	76	77	78	79	80	
						82	83	84	85	86	87	88	89	90	
66	72	78	84	90		92	93	94	95	96	97	98	99	100	
$-000000-000000-00000-$															

Skill: 9 times table													Year: 4
00000000000002					1	2	4	5	67	78	(9)	10	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					11	121	14	15	1617	7 (18)	19	20	
					21	222	24	25	26 (2)	(7) 28	29	30	
					31	323	34	35	(3)	3738	39	40	
					41	424	44	(4)	4647	4748	49	50	
9	18	27	36	45	51	52	(54)	55	56 57	5758	59	60	
54	63	72	81	90	61	62 6	64	65	6667	5768	69	70	
						(2) 7	74	75	76	778	9	80	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Skill: 7 times table} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Year: 4 \\
Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.
\end{tabular}} \\
\hline 7
42

-8 \& | 14 |
| :--- |
| 49 |
| |
| |
| | \& 21

56

1

21 \& | 28 |
| :--- |
| 63 |
| |
| |
| | \& 35

70 \& \begin{tabular}{|l|}
11

\hline 22

\hline 31

\hline 31

\hline 41

\hline 51

\hline 61

\hline 71

\hline 71

\hline 81

\hline (9)

\hline

 \&

12 \&

\hline 22 \&

32 \& 3

\hline 12 \&

\hline 52 \&

\hline 62 \&

72 \&

\hline 82

\hline 92 \&

\hline

 \&

13

23

33 \&

43

53

\hline 3 \&

73

73

83

93 \&

\hline

 \&

\hline 11

24 \&

34 \&

44 \&

54 \&

64 \&

74 \&

\hline 84 \&

94 \&

\hline

 \&

25 \&

\hline 35

45 \&

55 \&

65 \&

75 \&

\hline 85 \&

\hline 95 \&

\hline

 \&

6 \&

16 \& 17

26 \& 27

36 \& 3

46 \& 4

\hline 6 \& 5

66 \& 6

76 \&

86 \& 8

96 \& 9

\hline

 \&

7 \& 8

17 \& 18

27 \& 28

37 \& 38

47 \& 48

57 \& 58

67 \& 68

\hline 7 \& 78

87 \& 88

97 \& 98

\hline 10

 \& \&

10

20

30

40

50

60

60

\hline 80

90

100

\hline
\end{tabular} \&

\hline
\end{tabular}

Skill: 11 times table															Year: 4
11	22	33	44	55	66	1	2	3	4	5	67	78	9	10	Encourage daily
						(11)	12	13	14	15	1617	17	19	20	counting in multiples
77	88	99	110	121	132	21	(2)	232	24	25	2627	27.28	29	30	both forwards and
															backwards. This can
															be supported using a
															number line or
															hundred square.
															the eleven times
															table, using concrete
															manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100

Skill: 12 times table														Year: 4
									5	6			10	Encourage
12	24	36	48	60		(12)	13	14	15	16	17	1819	20	counting in multiples,
72	84	96	108	120		22	23	(24)	25	26	27	2829	30	
						32	33	34		(3)	373	3839	40	
132	144					42	43	44	45	46	(4)	(4) 49	50	hundred
 the 12 times table, using manipulatives to support. Make links to the 6 times table, seeing how each multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this pattern.														

Multiplication

Progression of calculation strategies

Skill	Year	Representations and models	
Solve one-step problems with multiplication	$1 / 2$	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	$3 / 4$	Place value counters Base 10	Short written method Expanded written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method

Skill	Year	Representations and models	
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	$5 / 6$	Formal written method	

Skill: Solve 1-step problems using multiplication \quad| Year: $1 / 2$ |
| :--- |

Skill: Multiply 2-digit numbers by 1-digit numbers									Year: 3/4
Hmant					H	T	0		Teachers may decide to first look at the expanded column method before moving on to the short multiplication method. The place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use times table knowledge.
			-ner		H				
			nem			3	4		
			cree				5		
		䁑	-nee			2	0	(5×4)	
		咀	ereer		1	5	0	(5×30)	
			enes		1	7	0		
	$\begin{aligned} & 11111111 \\ & 41111111 \end{aligned}$		$34 \times 5=170$						
	H	T	0	*	Tome		(1)		
		3	4			\bigcirc	Bio		
			5		00		(1)0	(1)00	
	1	7	0		000	1000			
	12			Q	20-2				

Skill: Multiply 4-dig				1-digi	Year: 5
			>T 2 7 1		When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Division

Progression of calculation strategies

Skill	Year	Representations and models	
Solve one-step problems with division (sharing)	$1 / 2$	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	$1 / 2$	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters
Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters
Part-whole model			

Skill	Year	Representations and models	
Divide 2-digits by 1- digit (sharing with remainders)	$3 / 4$	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 3-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division

Skill	Year	Representations and models	
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples

Skill: Solve 1-step problems using multiplication (sharing)	Year: 1/2
There are 20 apples altogether. They are shared equally between 5 bags. How many apples are in each bag? 00000 00000 -00 O $20 \div 5=4$	Children solve problems by sharing amounts into equal groups. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record division formally. In Year 2, children are introduced to the division symbol.

Skill: Solve 1-step problems using division (grouping) \begin{tabular}{l}

\multicolumn{1}{|c|}{| Year: $1 / 2$ |
| :--- |}

Children solve
problems by grouping
and counting the
number of groups.
Grouping encourages
children to count in
multiples and links to
repeated subtraction
on a number line.
They can use
concrete
representations in
fixed groups such as
number shapes which
helps to show the link
between
multiplication and
division.

\hline
\end{tabular}

Skill: Divide 2-digits by 1-digit (sharing with no exchange)		Year: $\mathbf{1 / 2}$
Tens	Ones	
When dividing larger		
numbers, children can		
use manipulatives		
that allow them to		
partition into tens and		
ones.		
Straws, Base 10 and		
place value counters		
can all be used to		
share numbers into		
equal groups.		

Skill: Divide 2-digits by 1-digit (sharing with exchange)				Year: 3/4
		52		When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method.
Tens				
mmmm	- 0 -			
memmm		?	?	
mmmm	- 0			
ㅍmemm	0 EB	1		
52	$52 \div 4=13$			
40				
		(1)(1)		
$\div 4$		(1)(1)		
10		(1)(1)		
$10+3=13$		(1)(1)		

Multiplication and division

Glossary of terms

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division

Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

